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Abstract. Stochastic quantization scheme with an invariant stochastic regularization is applied to models 
of chiral fermions in even-dimensional spacetimr In spite of the manifest preservation of chiral gauge 
symmetries by stochastic regularization of the stochastic averages, the anomalous chiral Ward identities 
are correctly reproduced in a covariant form at~er removing the regularization. 

1. In the present Letter we consider the derivation of chiral anomalies (for a recent 
account, see [1]) in arbitrary even (Euclidean) spacetime dimensions D within a 
stochastic quantization scheme (SQS) [2]. Here, the SQS is carried over to the case 
of chiral fermions. One of the most intriguing properties of an SQS is the possibility of 
introducing a new nonperturbative regularization affecting only the stochastic time 
direction [3] and, thus, implying that all symmetries of the models, including gauge-, 
chiral-, and supersymmetries, are preserved in the stochastic averages. As pointed out 
in [3], an SQS introduces new nonlocal terms which, although preserving all the 
symmetries in the stochastic averages, spoil the standard form of the corresponding 
Ward identities (see Equation (13) below). It is, therefore, a nontrivial task to check 
whether or not the correct Ward identities are reproduced in the equilibrium limit of the 
SQS with stochastic regularization. 

The regularized anomalous divergence of induced chiral fermion currents within the 
SQS is expressed through integrals over the stochastic time of the heat kernels of ~ *  
and ~*~,  where 9 '  = ~*(A) is the left-handed chiral Dirac operator in a background 
gauge field A~,(x). The final removal of the SQS regularization reduces the problem to 
an analysis of the small-time behaviour of the heat kernels. Thus, the present SQS 
approach resembles the heat kernel derivation of anomalies in [4]. Although SQS 
regularization manifestly preserves the chiral gauge symmetries in the stochastic aver- 
ages, the anomalous chiral Ward identities are correctly reproduced (after removing the 
regularization) in the covariant (not consistent with the Wess-Zumino integrability 
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conditions [5], see also [6]) form. In Section 3 below, it is explained why these latter 
properties of the SQS do not contradict each other. 

2. In this section we present a brief formulation of the SQS for chiral (e.g., left-handed) 
fermion fields ~OL(z, x) (for Dirac Fermions ~O, see [3, 7]), belonging to the fundamental 
representation of U(n) and interacting with a background U(n) gauge field An(x ) 

(D = even). We take the Langevin equations (the basic ingredients of SQS [2]) in the 
form 

~ , ~  = _ ( ~ , ) ~  + ~ ,  ~ = _ ( ~ , ~ ) T ~ _  + ~ ; (1) 

( rl2(z, x ) - ~ ( z ' ,  x ' ) )  = - 2 i  bA(Z - z')~(1 - Ho) b(D)(x - x ' ) .  (2) 

Here and below, the following notations are used 

~(*)  =_- e ( * ) ( A )  = i r  = io~*)(O,. + iA, . (x)) ,  

6t~O'v* + O'vO": = ate0" v + 0"v*0"/a = btav (0  (*)  - 2 (O/2 ) -1  • 2 ( D / 2 ) - I  m a t r i c e s ) ;  (3 )  

An(x)  = A~(x )T  ~ , tr(T"T b) = nbOb, 

TaT  b = ~ab + (dabc + i fabc)Tc ,  (4) 

x ~  ~  # , v = 0 , 1  . . . . .  D - l ,  a , b , c = O ,  1 , . . . , n 2 - 1 ;  

~O~ -= (1 - Ho)~OL, ~ -- (1 - IIo)-~ L and analogously for ~{  . (5) 

T a in (4) denotes the Hermitian U(n) generators, with T o belonging to the U(I)  
subalgebra*. The superscript 'T'  in (1) means operator transposition. Summation over 
repeated indices is understood and the latter will be suppressed in what follows. The 
Ho, H o in (2) and (5) are the zero-mode projectors of @*~ and ~ * ,  respectively. 
Notations (3) assume the following representation of Euclidean Dirac matrices and of 
the full Dirac operator 7(A): 

: )  
(6) (0 ~ 

V(A) = V~V.(A) = 9 "  . ~z- = ~(1 + /~ '+ '~)q, .  

In (1), the anticommuting chiral spinor field, rb_ denotes a Gaussian random source with 
the two-point correlation function given by (2). 

The SQS regularization proposed in [3] consists of inserting into (2) a regularized 
~-function bA(Z - z') obeying the following properties 

lim 5A(Z)= 5(Z), hA(- Z)= ha(Z), 

d k 
dz k bA(Z ) = 0 ,  k = 0 , 1  . . . . .  L -  1, (7) 

I T = O  

where L is an appropriate integer. 

. fob~ and d ~b~ m (4) vanish identically if any of the indices takes a zero value. 
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The reason for projecting out the SQS equations (1) and (2) by (5) is to guarantee 
the approach to equilibrium ( ~ *  and ~ * ~  in (1) should be positive in order to yield 
a 'drift force' [2]) 

( F [ ~ ( x ) ] ) Q =  lim ( F [ ~ ( z , x ) ] ) ,  7. (8) 
- ~  czQ 

The subscript "Q' on the left-hand side of (8) denotes the usual Euclidean quantum 
average of an arbitrary functional F[ ~ -  (x)] with the regularized weight 

} ~ - l ( x , x ' ) =  N(N*N)-~ 2 dzbA(T)exp[-zN*N](1 - rio) (x ,x ' ) ,  
(9) 

The subscript '~/' on the fight-hand side of (8) indicates the SQS average according to 
(2) with ~ ( z ,  x) being the solution of (1) subject to arbitrary initial conditions 
~ip(z o, x). Choosing ~ ' n  ___ 0 at % -- - oc we have 

~,~(~,x) = (aL ,7~) (~ ,x ) ,  ~ ( ~ ,  x) = (~/~z~) (~, x), 

aL(z,x; z', x ' ) =  0(z-  z ' ) e x p { - ( z -  z ' ) ~ * }  ( x , x ' ) ,  (10) 

GL(r,x; z',x') = O(z- z ' ) e x p { - ( z -  r')~*~} (x,x'). 

In case of (10), the limit ( z ~  ~ )  in (8) turns out to be irrelevant. 
Let us emphasize that the invariance under the chiral gauge transformation 

0/_ g '~OL(r, x IA~, r/g) = g-l(x)~lL(~, X IA., r/L), 

?L--~-~L(~, X p a g, ~g) = -~L(r, x IA., ~L)g(x), 

~( . ) (A g) = g-I  ~(*)(a)g,  g(x)e U(n), g(x )~  1, Ixl ~ ~ ,  

Agu(x ) = g - ' ( x )  (A~,(x) - i ~.)g(x), rfL(z, x) = g-l(x)llL(z, x) ,  

-~(~, x) = ~,_(~, x )g(x) ,  

is manifestly preserved in (1), (10) (2), regularized by (7) (here the functional 
dependence of the solutions of (1) t ~  (z, x) on A~,(x), -qL('r, x) is explicitly indicated). 

To be precise, we shall assume standard boundary conditions for A.(x)  (allowing 
compactification of the problem from Nz) to S ~ 

Au(x) = -ih-l(2)(Ouh)(2) + O(Ixl- l -~)  for Ixl-. ~ ,  

Ixl 
h ;  S D- 1 ~ U(n). 

(11) 

Also, the following identities will be useful for calculating the SQS averages (8) in the 
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next section 

I Io9  = 9 I I o ,  9*Ho = 1-Io9", 

exp [ - z g * ~ ]  = exp [ - z 9 9 "  ] ~ ,  

E, S. EGORIAN ET AL. 

(12) 
9 "  exp [ - z 9 9 " ]  = exp [ - z 9 " 9 ]  9 * .  

3. Let us consider the SQS regularized covariant divergence of the induced chiral 
fermion current 

- p. - u ~ / a  

= i ( { [ 9 " ( 9 9 " ) - 1  ] r ( ~  - 0 ~ 2 )  } (T, x)~2 (T , x )> ,  - 
(13) 

- i <~2 (z, x) { 9 " ( 9 9 " ) - ' 1  (q2 - c~.~k2)} (T, x ) > , ,  

where vl~b = b~b~  + FbCA~(x)  and Equations (1) were used. Substituting (10) into the 
right-hand side of (13) and performing a random source average according to (2), we 
arrive at the following expression (which does not already depend explicitly on the 
stochastic time) 

ab L ,  : 0  ~176 7 u J~ b(x) = 2 dz hA(z) t r{T~[exp[-z~*9]  (1 - Ho)(X,X ) - 

- exp [ - z 9 9 " ]  (1 - Ho) (x, x)]}. (14) 

To obtain Equation (14), identities (12) as well as the identity true for any nonnegative 
elliptic (selfadjoint) operator H 

f T2 dzexp[ - rH] = H - i  (exp[ - z l H ]  - exp[ - " c 2 H ] )  

Zl 

were employed. 
The presence of hA(z) (7) in (14) regulates all eventual ultraviolet divergences, i.e., 

singularities of the form O(z-t'), k >/1, at the lower limit of the 'proper-time' integral. 
One of the most efficient tools to analyze the latter is the well-known asymptotic Seeley 
expansion [8] for the heat kernel 

exp[-z/- / ]  (x, x) = ~ r I/~(J-o>m(n) n)(H; x) (15) lit(J" - 
j r 0  

where r is the order of H and re(n) :u .  x) are local functionals of the coefficients ~ l / r ( j - -  D ) ~ aa ) 

of H. Some relevant properties of (15) for H = 72(.4) are briefly recalled in the 
Appendix. 

Using (A1)-(AS) it may be easily shown that (accounting for (6)) 

tr[Tat~(D) t o ~ , .  x) - re(D) t~ ,o~ .  1/2o-z))~ . . . .  1/2u- D)t-~ .~, x))] 

= t r [T"?  (D+')~2)0._D)(v2(A); x)] = 0,  fo r j  < D.  
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Therefore, no ultraviolet divergences arise in (14) after taking the limit A ~ oo* (cf. (7)) 

ab L ,  b _ 7~ J~ (x) - tr[T~? (D+ 1)IIV(A)(x, x)] 

+ tr [T"(O(o~ x) - ~ ( o m ( ~ * ;  x))] 

= t r [T"?  ~z'+ ')Hv~a)(x, x)] - tr[T~? (~ ~)O(o~ x)] ,  (16) 

where in the last line once again (6) was accounted for and l-I v(a) denotes the zero-mode 
projector of the full Dirac operator. 

By a straightforward computation (using (A 1)-(A5)) of the last term in (16), we finally 
get the covariant form [9, 1] of the U(n) non-Abelian chiral anomaly 

ab L b 7 .  J~" (x) = tr[T~? w + 1)l-IoVtA)(x. x)] - 

ill - !(4g) o/2 /3.,...0 tr [ T"Fm.~...Fuo_,~, o ] ; (17) 

F , v  = O . A .  - O~A. + i [ a , . . 4  v] . 

In particular, for the U(1) subgroup (17) reads (e.g., [4, 1]): 

t3,J~'a =~ = index(@*; x) - Co/2(F; x) ,  (18) 

where index (9* ;  x) denotes the index density of 9 "  and Co/2(F; x) is the density of 
the D/2th Chern characteristic class (see, e.g., [10]). 

Thus, we have shown that the SQS for chiral fermions yields the correct covariant 
form of the (non-Abelian) chiral anomalies in spite of the fact that the intermediate SQS 
regularization [3] manifestly respects the chiral gauge symmetries in the stochastic 
averages (8). To understand why these two properties of SQS are compatible, let us 
recall that the (regularized) anomalous chiral Ward identities result from the chiral gauge 
noninvariance of the regularized effective fermion action (for a discussion, see the 
second ref. [ 12]) which in the present case of stochastic regularization reads (cf. (9)) 

S ,~A]  = -In det[ - i~* (A) ] ,  S~ff[A g] v~ S~ee[A], 

and hence 

bS'~fr[Ag] = iTuJ~A(X ) # 0 .*r162 (19) 
~ - ~  g ( x )  = 1 

On the other hand, however, let us emphasize that there does not exist a functional 
F ( ~ -  (T, x)] such that s,~fr[A] (19) could be obtained as an equilibrium limit of an SQS 
average (8). Therefore, the chiral gauge noninvariance of s,~fr[A] does not contradict 
the manifest chiral gauge invariance of  (8). 

* The regularizing b^(z) plays a crucial role in the course of the derivation of (14). Just because of its 
presence, both operations (a) taking the matrix trace and (b) taking integrals over the stochastic time, were 
mathematically correctly interchanged. 
*Jr Here J~A denotes the consistent current which differs from the covariant one J~  (13) by a local finite 
counterterm [6]. 
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Finally, let us note that the SQS exhibits a serious drawback in odd D. As shown 
in [11 ], the SQS fails to reproduce the existing parity-violating anomalies [ 12] of the 
odd-dimensional massless fermions. 

Due to technical reasons, the submission of this Letter (containing part of the material 
of the preprint [ 11 ]) was delayed by several months. Meanwhile, [ 13] appeared which 
discusses similar problems to the ones above. However, these authors' conclusion about 
noncommutativity of the equilibrium limit (8) and the massless limit for Dirac fermions, 
leading to a cancellation of the chiral anomalies within an SQS for finite stochastic time, 
is wrong. This is due to an elementary mathematical error in Equation (13) of ref. [ 13] 
(for a criticism, see [14]). 

Appendix 
Here we shall list some useful formulae concerning the computation of the coefficients 

(D) 2 . 01/20_ D)(V (A), x) in the Seeley expansion (15) for the heat kernel of V2(A) where the 
standard boundary conditions (11) are assumed for A,,(x). 

Let us introduce the symbols a(x; ~, 2), R(x; ~, 2) of V2(A) - 2 and its inverse 
(parametrix): 

[V2(A) - 2] ~(n)(x - x ' )  = (2~t) -n  f dDr exp [i~(x - x')] a(x; ~, ,~) 

and analogously for R(x; ~, 2) (for general notions and proofs in the symbol calculus 
of elliptic operators, see e.g., [ 15]). Then, the following (asymptotic) expansions are 
valid 

2 

a(x; r 4) = Y~ ak(x; r ~), crk(x; pC, p~,~) = d'a~(x; r ,~) (p > 0),  
k=O 

%(x; r 2) = ~2 _ 2, ai(x; ~, 4) = 2r (A1) 

i 
ao(X; r 2) = - i (0 ,A,)  + A,A,., + ~ [~,,, ~'~]G~ ; 

R(x; ~, ,l) = ~. R -2 - j (x ;  ~, ,0 ,  n -2 - j (x ;  p~, p2,D = p-2- :n  -2-:(x; ~, ,D, 
j = 0  

and R _2_j(x; ~, 2) are recursively determined from 

~Ol= E (~!)-'(O~a2_k)t(-i~x)~'R_2__,], 1= O, 1,2 . . . . .  (A2) 
j + k +  lal =1 

where ais a multiindex. Finally, the explicit expressions of ~<1~2)o._ n) (~2(A); x) are given 
by 

*~2)~j_ o,(VZ(A); x ) =  i(27r) -'n+ 1) f dOG [ d2 e -a R_z_j(x; ~) (A3) 
J J r  
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with a contour F in the complex A-plane defined as 

r = (ioo, ie) u C~ ~ ( - i e ,  - i x ) .  

Here C, denotes a half-circle of the radius e connecting the points ie and - ie and passing 
through the point -e.  

From (A1) and (A2) one easily finds 

(: )' R_2_2,(x;~,~)=(-1)'(r -~'§ [e.,yv]F.v + " ,  

R -2-~2t+ 1) (x; ~, ~,) 

= 2i(-1)1(~ 2 - 2) -(t+2) [7., 7v]F~v x (A4) 
r=0  

where the dots stand for terms containing less than 21 Dirac matrices. 
The following identities are also used in the text (D = even): 

tr(~(D+l)Tm...7~,~ ) = 0  ( k < D ) ,  

tr  (~(o + 1) Ym' '"  7~,o) = 2D/2(-- i)  1 /2D(D + i)ep, l.../~D" (A5) 
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